411 research outputs found

    Seismic sequence stratigraphy of the Palaeogene offshore of Belgium, southern North Sea

    Get PDF
    A fine-scale seismic stratigraphic model has been developed for the Palaeogene of the southern North Sea on the basis of interpretation of a dense high-resolution reflection seismic grid, covering the Belgian sector of the continental shelf and the adjacent parts of the Dutch, French and UK sectors. Classical seismic stratigraphic criteria have allowed up to 13 major units to be defined; the geometry and seismic facies characteristics of each have been analysed in detail. The seismic stratigraphy has been compared with the results of four offshore boreholes. 'Events and trends' identified on seismic sections and in outcrops in northern Belgium have been correlated, and offshore seismic facies have been tentatively matched with onshore lithofacies. The geological history of the study area is discussed in terms of eustatic sea level changes and regional tectonic events, and the main characteristics of the offshore Palaeogene deposits are evaluated in a sequence stratigraphic context

    Streamlined islands and the English Channel megaflood hypothesis

    Get PDF
    Recognising ice-age catastrophic megafloods is important because they had significant impact on large-scale drainage evolution and patterns of water and sediment movement to the oceans, and likely induced very rapid, short-term effects on climate. It has been previously proposed that a drainage system on the floor of the English Channel was initiated by catastrophic flooding in the Pleistocene but this suggestion has remained controversial. Here we examine this hypothesis through an analysis of key landform features. We use a new compilation of multi- and single-beam bathymetry together with sub-bottom profiler data to establish the internal structure, planform geometry and hence origin of a set of 36 mid-channel islands. Whilst there is evidence of modern-day surficial sediment processes, the majority of the islands can be clearly demonstrated to be formed of bedrock, and are hence erosional remnants rather than depositional features. The islands display classic lemniscate or tear-drop outlines, with elongated tips pointing downstream, typical of streamlined islands formed during high-magnitude water flow. The length-to-width ratio for the entire island population is 3.4 ± 1.3 and the degree-of-elongation or k-value is 3.7 ± 1.4. These values are comparable to streamlined islands in other proven Pleistocene catastrophic flood terrains and are distinctly different to values found in modern-day rivers. The island geometries show a correlation with bedrock type: with those carved from Upper Cretaceous chalk having larger length-to-width ratios (3.2 ± 1.3) than those carved into more mixed Paleogene terrigenous sandstones, siltstones and mudstones (3.0 ± 1.5). We attribute these differences to the former rock unit having a lower skin friction which allowed longer island growth to achieve minimum drag. The Paleogene islands, although less numerous than the Chalk islands, also assume more perfect lemniscate shapes. These lithologies therefore reached island equilibrium shape more quickly but were also susceptible to total erosion. Our observations support the hypothesis that the islands were initially carved by high-water volume flows via a unique catastrophic drainage of a pro-glacial lake in the southern North Sea at the Dover Strait rather than by fluvial erosion throughout the Pleistocene

    Gas hydrate systems respond slowly to seafloor warming

    Get PDF
    In a marine environment, gas hydrates are stable at certain pressure (sea level) and temperature (bottom water temperature) conditions. Changes in these conditions may result in the destabilization of the gas hydrates. In this study we investigate the temporal response of a continental margin gas hydrate reservoir to changes in the pressure and/or temperature regime, considering the latent heat of hydrate dissociation and the long response times to conductive heat transport in submarine sediments. Gas hydrates and the surrounding sediments do not instantly respond to changing environmental conditions. A vertical subsoil column without gas hydrates needs more than 5,000 years to adapt its temperature profile to an increase in seafloor temperature. A vertical subsoil column containing gas hydrates has the same response time if the stability of the hydrates is not affected. Although, when gas hydrates stability is affected due to changes in their environment, the response time to these changes is extended. Destabilized gas hydrates will dissociate into methane gas and water. The dissociation process happens at a constant temperature and requires a lot of energy (heat). Dissociation of gas hydrates thus delays the response time of the surrounding subsoil; up to 100,000 years may pass before the temperature profile completely adapted to the changed environmental parameters. Because of this slow response to changes in environmental parameters, gas hydrate dissociation cannot be regarded as the trigger to global warming at the end of glacial and stadial periods and gas hydrate dissociation cannot be responsible for the high observed atmospheric methane concentrations in ice core records, as has been postulated in a number of high-profile publications

    An 18,000-year multiproxy lacustrine record of climate variability in south-central Chile (40°S): Lago Puyehue, Chilean Lake District

    Get PDF
    An 11-m-long sediment core was collected in Lago Puyehue (40ºS, Lake District, Chile). The coring site had been selected on basis of a seismic-stratigraphic analysis that highlighted it as an area of relatively condensed, continuous and undisturbed sedimentation in this otherwise highly dynamic post-glacial lake. The 11-m core extends back to 17,915 cal yr BP. An age-depth model was established by 9 AMS 14C dates, constrained by 210Pb, 237Cs, 241Am measurements, by the identification of event-deposits related to earthquakes and/or volcanic eruptions, and by varve-counting for the past 600 yr. The core was submitted to a multi-proxy analysis, including sedimentology, mineralogy, grain-size, major geochemistry and organic geochemistry (C/N ratio, d13C), loss-on-ignition, magnetic susceptibility, diatom analysis and palynology. Along-core variations in sediment composition reveal that the area of Lago Puyehue was characterised since the Last Glacial Maximum (LGM) by a series of rapid climate fluctuations superimposed on a long-term warming trend. These rapid climate changes are: (1) an abrupt warming at the end of the LGM at 17,300 cal yr BP, (2) a short, relatively cold interval between 13,100-12,300 cal yr BP, (3) a second abrupt warming, possibly with increased precipitation, at about 12,300 cal yr BP, and (4) an increase in climate variability in the late Holocene at 5000-6000 cal yr BP. The timing of these rapid climate changes confirms previously reported climate trends from continental southern South America and their out-of-phase relationship with those from the northern hemisphere and from Antarctica

    A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard

    Get PDF
    Quantifying marine methane fluxes of free gas (bubbles) from the seafloor into the water column is of importance for climate related studies, for example, in the Arctic, reliable methodologies are also of interest for studying man-made gas and oil leakage systems at hydrocarbon production sites. Hydroacoustic surveys with singlebeam and nowadays also multibeam systems have been proven to be a successful approach to detect bubble release from the seabed. A number of publications used singlebeam echosounder data to indirectly quantify free gas fluxes via empirical correlations between gas fluxes observed at the seafloor and the hydroacoustic response. Others utilize the hydroacoustic information in an inverse modeling approach to derive bubble fluxes. Here, we present an advanced methodology using data from splitbeam echosounder systems for analyzing gas release water depth (> 100m). We introduce a new MATLAB-based software for processing and interactively editing data and we present how bubble-size distribution, bubble rising speed and the model used for calculating the backscatter response of single bubbles influence the final gas flow rate calculations. As a result, we highlight the need for further investigations on how large, wobbly bubbles, bubble clouds, and multi-scattering influence target strength. The results emphasize that detailed studies of bubble-size distributions and rising speeds need to be performed in parallel to hydroacoustic surveys to achieve realistic mediated methane flow rate and flux quantifications

    Seismic evidence of small-scale lacustrine drifts in Lake Baikal (Russia)

    Get PDF
    High resolution, single-channel seismic sparker profiles across the Akademichesky Ridge, an intra-basin structural high in Lake Baikal (Russia), reveal the presence of small sediment mounds and intervening moats in the upper part of the sedimentary cover. Such features interrupt the generally uniform and even acoustic facies and are not consistent with the hemipelagic sedimentation expected on such an isolated high, which would produce a uniform sediment drape over bottom irregularities. The influence of turbidity currents is excluded since the ridge is an isolated high, elevated more than 600-1000 m above adjacent basins. The mounded seismic facies includes migrating sediment waves and non-depositional/erosional incisions that strongly suggest sediment accumulation was controlled by bottom-current activity. We interpret the mounds as small-scale (few tens of km2 in area) lacustrine drifts. Four basic types of geometry are identified: 1) slope-plastered patch sheets; 2) patch drifts; 3) confined drifts; 4) fault-controlled drifts. The general asymmetry in the sedimentary cover of the ridge, showing thicker deposits on the NW flank, and the common location of patch drifts on the northeast side of small basement knolls, indicate that deposition preferentially took place on the lee sides of obstacles to a current flowing northward or sub-parallel to the main contours. Deep-water circulation in the ridge area is not known in detail, but there are indications that relatively cold saline water masses are presently flowing out of the Central Basin and plunging into the deep parts of the North Basin across the ridge, a process that appears to be driven mainly by small differences in salinity. We infer that the process responsible for the observed bottom-current-controlled sedimentary features has to be sought in these large-scale water-mass movements and their past equivalents. The age of the onset of the bottom-current-controlled sedimentation, based on an average sedimentation rate of 4.0 cm/ky, is roughly estimated to be at least 3.5 Ma, which is generally regarded as the age of the onset of the last major tectonic pulse of rift basin development in the Baikal region
    corecore